Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury.

نویسندگان

  • Johannes Riegler
  • Aaron Liew
  • Sean O Hynes
  • Daniel Ortega
  • Timothy O'Brien
  • Richard M Day
  • Toby Richards
  • Faisal Sharif
  • Quentin A Pankhurst
  • Mark F Lythgoe
چکیده

Vascular occlusion can result in fatal myocardial infarction, stroke or loss of limb in peripheral arterial disease. Interventional balloon angioplasty is a common first line procedure for vascular disease treatment, but long term success is limited by restenosis and neointimal hyperplasia. Cellular therapies have been proposed to mitigate these issues; however efficacy is low, in part due to poor cell retention. We show that magnetic targeting of mesenchymal stem cells gives rise to a 6-fold increase in cell retention following balloon angioplasty in a rabbit model using a clinically applicable permanent magnet. Cells labelled with superparamagnetic iron oxide nanoparticles exhibit no negative effects on cell viability, differentiation or secretion patterns. The increase in stem cell retention leads to a reduction in restenosis three weeks after cell delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of biological characteristics of mesenchymal stem cells labeled with superparamagnetic iron oxide particles in vitro.

Mesenchymal stem cell (MSC) transplantation provides a novel strategy for the treatment of human disease. MR imaging (MRI) is able to track transplanted stem cells labeled with superparamagnetic iron oxide (SPIO) in vivo. However, the effect of SPIO upon labeled MSCs remains unclear on a cellular level. In this study, the biological characteristics of rat MSCs labeled with home-synthesized SPIO...

متن کامل

Magnetic Resonance Imaging with Superparamagnetic Iron Oxide Fails to Track the Long-term Fate of Mesenchymal Stem Cells Transplanted into Heart

MRI for in vivo stem cell tracking remains controversial. Here we tested the hypothesis that MRI can track the long-term fate of the superparamagnetic iron oxide (SPIO) nanoparticles labelled mesenchymal stem cells (MSCs) following intramyocardially injection in AMI rats. MSCs (1 × 10(6)) from male rats doubly labeled with SPIO and DAPI were injected 2 weeks after myocardial infarction. The con...

متن کامل

Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors

Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...

متن کامل

Inorganic Nanoparticles for MRI Contrast Agents

O G Inorganic Nanoparticles for MRI Contrast Agents R E S By Hyon Bin Na, In Chan Song, and Taeghwan Hyeon* S R E P O R T Various inorganic nanoparticles have been used as magnetic resonance imaging (MRI) contrast agents due to their unique properties, such as large surface area and efficient contrasting effect. Since the first use of superparamagnetic iron oxide (SPIO) as a liver contrast agen...

متن کامل

Optimal Labeling Dose, Labeling Time, and Magnetic Resonance Imaging Detection Limits of Ultrasmall Superparamagnetic Iron-Oxide Nanoparticle Labeled Mesenchymal Stromal Cells

Background. Regenerative therapy is an emerging treatment modality. To determine migration and retention of implanted cells, it is crucial to develop noninvasive tracking methods. The aim was to determine ex vivo magnetic resonance imaging (MRI) detection limits of ultrasmall superparamagnetic iron-oxide (USPIO) labeled mesenchymal stromal cells (MSCs). Materials and Methods. 248 gel-phantoms w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 34 8  شماره 

صفحات  -

تاریخ انتشار 2013